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The suggestion for using such a scheme was first given by Kelley 

[4J who used performance index-to-go as the index variable. 

a "transversal comparison" scheme. Time-to-go has &he advantage that it 

Tlways decreases monotonically whereas this is  not always true nc p k r f  

index-to-go. A monotonically changing index variable must be used if t h c  

transversal comparisons are to be made over the entire flight. The trans- 

versal comparison is used here in an iterative scheme to predict thc t i n t c  

to-go. 

systems and in-flight changes in the terminal constraints. 

He called this 

- " - i ? p  

Kelley's suggestion is also extended to include non-stationary 
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ABSTRACT 

A modification of the perturbation feedback control scheme of Refs. [l] , 

1 2 1 ,  and [3] is presented that greatly increases its capability to handle dis- 

turbances in cases where the final time is not specified. The modified control 

scheme uses a set of precalculated gains which allows in-flight estimation of 1 

I the change in the final time due to perturbations from a nominal path. 

time-to-go, determined from the predicted change in final time, is used to 

enter tables of precalculated feedback control gains. 

The 

This modified guidance scheme is applied to a re-entry glider entering 

the atmosphere of the Earth at supercircular velocities. 

bottom of the pull-up maneuver (nominal altitude 188,000 ft., nominal velocity 

33,000 ft./sec. 

and zero (0) flight path angle with maximum terminal velocity. For initial 

altitudes between 167,000 and 216,000 ft. the terminal error in altitude is 

less than two feet; for initial velocities between 23,000 ft./sec. and 43,000 

ft./sec. the terminal altitude error is less than 13 ft. In addition, the 

terminal velocity is very close to optimal for these initial conditions. 

Beginning at the 

-1 
) the glider is guided to a terminal altitude of 220,000 ft. 

This work was partially supported by the Space and Information Systems 
Division of the Raytheon Company. 
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1. INTRODUCTION 

Among the many feedback control schemes valid for small perturbations 

about a nominal path is the neighboring optimum control scheme [l], [Z]. 

This scheme generates a path neighboring to a nominal optimal path which 

minimizes the performanceindex to second order while meeting the terminal 

constraints. The control perturbation from the nominal control is a linear 

combination of the state variable perturbations weighted by a precalculated 

set of gains. The gains are determined by solving what is called the 

"accessory minimum problem" in the calculus of variations. 

one terminal condition is specified, some of the gains become infinite at 

the nominal terminal time. 

Where more than 

The precalculated gains are conveniently stored as a function of 

Due to unforeseen disturbances, the system may not pass through the time. 

nominal initial state at the nominal initial time. The optimal path from 

this neighboring initial state may very well intersect the terminal manifold 

at a time later than the nominal terminal time; if clock time is used to 

enter the gain tables, the gains would become unbounded before reaching the 

terminal manifold. 

at an "index time" determined, so that the time-to-go on the neighboring 

path is the same as the time-to-go for the nominal path, i.e., 

This difficulty is avoided if the gain tables are entered 

N (tf - t) = (tf - tI) = time-to-go 

where tf is the estimated terminal time of the neighboring path, t! is 

the terminal time of the nominal path, t is the clock time and tI is 

the index time. As the time-to-go goes to zero the gains go to infinity 



I at the terminal time of the neighboring path. The time-to-go can be esti- 

mated from inflight conditions by using (1) as 

t p ;  = t - t I  . 
N The change in the final time, 

deviation in the state variables from their nominal values using an additional 

set of precalculated gains (see e.g., Ref. 2 ) .  This additional set of gains, 

while adding some complexity, allows the control scheme to meet the terminal 

constraints and achieve the minimum value of the performance index with much 

tf - tf, can be calculated in terms of the 

I greater perturbations from the nominal state. 

2 ,  GENERAL DESCRIPTION OF CONTROL SCHEME 

The system to be controlled is described by a set of first-order non- 

linear differential equations 

e 
x = f(x,u,t) ( 3 )  

where x is a column vector of n state variables, f is a column vector 

of n known functions, u is a control vector of m control variables, t 

is the independent variable time and (’) z d( )/dt. 

Control programs, uN(t), and associated state variable programs, 

are precalculated to produce a path starting from a given initial N x (t), 

point x (to) that minimizes a performance index 

while satisfying terminal constants 
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E 0 

where J, is a column vector of q known functions (q 5 n-11, and tf 

is the (unspecified) terminal value of the independent variable. 

For small variations in the state from the nominal state, a control 

program can be found which generates an optimum path neighboring to the 

nominal path. 

and [2], may be obtained by multiplying the state deviations by a precal- 

The required control perturbations, as shown in Refs. [l] 

culated gain matrix, A(t): 

To meet the constraints (51, some elements of the gain matrix, A(t), may 

become infinite at the terminal time. If the neighboring path reaches the 

terminal manifold later than the nominal path, the control variation of ( 6 )  

becomes undefined. 

To avoid this difficulty it is suggested that the gain tables be 

entered at an index time determined so that the time-to-go on the nominal 

path is the same as the time-to-go on the neighboring path as expressed in 

(1). The inflight estimate of the change in the terminal time (2) is found 

in terms of the deviations in the state variables from the nominal values 

weighted by a set of precalculated gains, K(t),(see Section 3 or Ref. [23), as 

N 
tf - tf P t - tI t . (7) 

N 
f Since K(t), as well as A(t), are calculated along the nominal, tf - t 

is undefined for values of t greater than tf. However, instead of (7) an N 
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implicit equation for the index time is found by using the first-order approx- 

imation 

I - 4 -  

in (7) to obtain 

If t and the current state vector, x(t), are known, the index time can 

be determined rapidly by successive substitutions into (9), using tables of 

K(tI)/ [l + K(tI)iN(tI)] and x N (tI). 
N *N Using Eqs. (61, (81, and u (t) = uN(tI) + u (tI)(t-tI)* the control 

N N u(t) may be expressed in terms of u (tI), x (tI), tI and feedback control 

gains, A (tI) : 

Note, x(t) is the current estimate of the state vector and t is the 

clock time. If the system being controlled is stationary, that is, if the 

equations of motion and the boundary conditions are not explicitly dependent 

on time, it will be shown that 

Thus the control for a neighboring path for the stationary case is independent 

of the time variation t - tI: 



In 

accessory 

procedure 

the following section h(t) and K(t) are found by solving the 

minimum problem in the calculus of variations. The iterative 

for finding tI will be eliminated by developing a gain associated 

with (t-tI). Also the gain matrix associated with (t-tI) in (10) is 

calculated through numerical integration. 

tiation to find GN(t) is eliminated. 

The need for numerical differen- 

3 .  THE ACCESSORY MINIMUM PROBLEM 

The feedback gains used to estimate small changes in the control 

variable and final time are found by solving the accessory minimum problem 

(see e.g., Ref. [2J or [SI>. About a stationary path (a path satisfying 

first-order necessary conditions) the performance index expanded to second 

order is minimized subject to linear dynamics. The state space for this 

accessory problem is composed of the deviations in the state variables 

awav from the nominal values. 

The augmented performance index for the general problem stated in 

the last section is defined as 
t 

j = CP + JLf [~(x,u,~,t) - XTi]dt 

where 

Q 

H 

E 

t 

(14) 

Here, A and v are vector Lagrange multipliers associated with ( 3 ) ,  and 
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(5), respectively. The initial and final times are and tf. The 

Euler-Lagrange necessary conditions are 

X 
= -H 

- 0  
HU 

The terminal conditions are 

x(t,) = ax 

Q = H+(Pt - 0 

where ( )x means a (  )/ax. 

In the accessory minimum problem, 6u(t) is to be determined which 

(13) rdnimizes the second-order expansion of the augmented perf onnance index 

subject to 

btf 

6x * fx6x + fu6u 

6x (to) specified 

d$ = JI 6x + $dtf where d$ is specified 
X 

where the deviation in any variable Q io defined as 

6Q = Q(t) - QN(t) 

- 6 -  



The weighting matrix in (20) is 

- 
S R m  

R~ Q n 

m n a- T T  

(OXX % 

Note that this matrix is symmetric. 

First-order necessary conditions for the accessory minimum problem 

may be developed as follows. Define the variational Hamiltonian for this 

accessory problem as 

the necessary conditions are 

From (29) the perturbed control is given in terms of 6x and 6X as 

6u = -H'l [H 6x + HuA6A] uu ux 

where HUU is assumed to be non-singular. 

In order to develop a feedback law from (30) and predict the change 

- 7 -  



in terminal time from present state deviations, a linear relation among 

the variables b x ,  dv, dtf, b X ,  dJI and dQ, developed in Ref. [2],  is 

presented here as 

The elements of the coefficient matrix of (31) are called "sweep" variables 

and are determined by a symmetric but non-linear differential equation 

(developed in Ref. 121) : 

where 

A = fx - f,H;iHux 
-1 T B =  f H f  u uu u 

- H H-~H = Hxx xu uu ux 

The boundary conditions are given by (25). 

4. PROPERTIES OF SWEEP VARIABLES 

The dif ferential equations of (32) are integrated backwards from 

- 8 -  



the terminal manifold, stopping at the initial time. 

conjugate points (g 4 -3 and the path is normal (6 0 for a minimum) 

as defined in Ref. [ 5 ] ,  then (30) can be manipulated into the form (on 

an optimal path R - 0 I) dR = 0) 

If there are no 

where 

A 

S E 
s - - y a a  Ill* -1 a T 

ii = - 0 ,  n 

(37) 

It should be noted that these new variables, ( * I ,  still satisfy (32). 

transformation is desirable in order that the perturbed control of (30) be 

written as a feedback law operating on the deviations of the state variables. 

This 

When integrating (321, this transformation must be taken in a time interval 

which lies some time before the terminal boundary (corresponding to Q close 

to zero) and some time after a conjugate point defined for an arc with no 

terminal constraints on the state space but with fixed terminal time (this 

corresponds to S becoming unbounded). For the atmospheric re-entry guidance 

problem to be given in Section 7, S does go to Q) although 3 remains 

bounded (also see Appendix C ) .  

- 9 -  



5. FEEDBACK GAINS 

The feedback gains K(t) and ~ ( t )  can now be identified with 

the sweep variables. 

in the terminal time is 

From (36) the general form for predicting the change 

*T where m K(t), This form has the additional flexibility of allowing 

small changes in the terminal constraints. 

Instead of developing the implicit equation as (9) let us suppose 

that some estimate of t-tI was made. 

bation then (2) does not hold but differs by some error, E ,  as 

If the system has undergone a pertur- 

(t-tl) NEW - (t-tl) + E . (43) 

If ( 4 3 )  is introduced into (42) along with (8) and (t - tI)NEW= dtf an explicit 
equation can be obtained for calculating e :  

E 

where 

(44) 

Note that in (44) second-order term8 are neglected. 

are used iteratively until 

E 

Equations ( 4 3 )  -(45) 

e 3 0 .  For the numerical problem to ba dircussed, 

was very soul1 within two iterations. 

The index time that results from this iterative procedure is w e d  

- 10 - 



to enter the gain tables from which the perturbed control variable is cal- 

culated. If the linear expression for dA(t) in (36) is substituted into 

(301,the perturbed control is 

6u = -A(t)6x(t) - B(t)dJI 

where 

The control program on the neighboring path can be written as a function 

of index time with the help of (8): 

where 

(50) N *N 
r(tI) = A(tI)f (t,) + u (tI) 

The control program also allows for variations in the terminal conditions. 

Second-order terms in (49) are neglected. 

For systems which are stationary the gains E and r are zero. In 

Appendix A the explicit dependence of these gains on time is demonstrated. 

6 .  ANALYTIC EXAMPLE OF CONTROL SCHEME 

The following example is chosen to illustrate some of the features 

of the previous section for non-stationary problems. The problem is to reach 

- 11 - 



a parabolic boundary in x,t 

and integral squared velocity Is minimized. 

a one-dimensional pursuit problem in which the target has a constant accel- 

erat ion. 

apace so that a combination of terminal time 

This might be interpreted as 

The problem statement is: find the control variable, u, that minimizes 

J -  [L ( 1+u2) d t 

with dynamical equations 

x = u  

and the terminal boundary 

J, - X f +  

The augmented performance 

A 

J - @ +  

where 

t i - 1  = 0 

index is 
t 6 
* [H - A;]dt 

Firet-order necessary conditions are 

(53) 

H ~ = o - u - - ~  

- 0  
t'tf 

From (571, (58), and (59) the control variable as a function of terminal 

(54) 
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time is 

U 

Using the dynamic 

and terminal time 

X 
0 

Choosing x and 
0 

equation ( 5 2 )  the relation between the initial state 

is 

solving for tf the performance index can be evaluated 

using (51) and (60) as 

2 2 1/2 J 2 + t, - t,(t, + 2) 
L L L  

The optimal paths for different initial conditions are plotted in 

Fig .  1. Note that the control variable along each of these paths is different. 

These paths terminate on the parabolic manifold in x,t space. Lines of 

constant time-to-go (dashed lines) and constant performance index (dashed 

dotted lines) are super-imposed on the trajectories. Suppose that the con- 

trol scheme of the last section is applied to this problem. Consider that 

the path emanating from x = .4, t = 0 is the nominal path. Now at t = 

. 3 2  the state x = . 3  is measured. If present time is used as the index 

time, then the nominal value of the state would be x = . 7 .  As t approaches 

t = . 5 ,  the nominal path meeds the terminal manifold. From this point on, 

the control on the neighboring path is not defined since no gains are cal- 

culated beyond this point. 

N 

However, if the index time is chosen so that 

the time-to-go to the terminal boundary for both the neighboring path and 

nominal path are the same, the gain tables of the nominal are entered when 

xN = .4 and t = 0. As time progresses, both paths reach the terminal 

boundary together. 

- 13 - 



Note that if tw paths itart at the same position but at different 

times the optimal ContrOls for each resulting optimum path are not the same. 

This difference in time between the present time and index time for non- 

stationary problems must explicitly be included in the calculation of the 

control deviation as given by (10). 

The control gains for calculating the perturbed control and predicting 

the error in the difference of the times-to-go are easily found from the 

scheme of the last section and are given here as 

€ =  

7. NUMERICAL EXAMPLE: 

GUIDANCE SCHEME FOR A RE-ENTRY GLIDER 

The control scheme is applied here to the problem of guiding a lifting 

re-entry vehicle at supercircular velocities from the bottom of the pull-up 

maneuver (nominal altitude 188,000 ft. , nominal velocity 33,000 ft.sec. 
nominal flight path angle -0.1') to an altitude of 220,000 ft. at zero flight 

path angle while maximizing the terminal velocity.+ 

108s at the terminal altitude. . The nomenclature for thie problem is given in 

-1 
9 

This minimizes the energy 

'This starting point was chosen to save computer time. Usually control 
begins at entry into the atmosphere (altitude I 400,000 ft.) a8 in Ref. [I]* 
Note that from the entry point the performance index, velocity, is 
monotonically decreasing. 

I - 14 - 



Fig. 2.  The aerodynamic forces, lift and drag, are varied through the con- 

trol variable, angle-of-attack u(t). The wing loading of the vehicle, 

mgo/S, was taken as 61.3 1b.ft. . The 1956 ARDC standard atmosphere 
model was used. 

in Fig. 3 .  

-2 

The lift-drag characteristics of the vehicle are shown 

The non-linear equations of motion of a point mass about a 

spherical non-rotating Earth are given in Appendix B. 

histories for the nominal optimal path are given in Fig. 4. 

The state variable 

This problem is stationary and as such is independent of the start- 

ing time. 

that the terminal time of the nominal is the same as that of the neighbor- 

Therefore, the nominal may be thought of as shifted in time so 

ing path. This again causes the time-to-go on both paths to be the same. 

The gains for the continuous in-flight prediction of the error in time-to- 

go is given by Kv, Kt $ tablulated in Fig. 4 where 
Y' 

The index time, tI, is found so that E = 0 by the procedure of Sect. 5. 

Once 

using the feedback gains Kt, Ku I$ 

tI 
is found the perturbed value of angle-of-attack is calculated 

tabulated in Fig. 4 as 
Y '  

The first-order necessary conditions and coefficient matrices for the sweep 

equations for this problem are given in Appendix B. 

The feedback gains tabulated in Fig. 4 are seen to be positive at 

the beginning of the flight and then go to negative values. This same 

- 15 - 



behavior occurs in guiding a vehicle to a fixed point along the minimum 

distance path on the surface of a sphere (see Appendix C). Positive feed- 

back for the re-entry problem is required to maximize the velocity whereas 

negative feedback is required to meet the terminal constraint. 

end of the flight the guidance scheme concentrates on meeting the terminal 

constraints, whereas with time-to-go large, it concentrates on maximizing 

terminal velocity. 

Near the 

The modified control scheme which uses time-to-go all along the path 

is compared with the control scheme which uses present time as the index 

time (this is the same control scheme used in Ref. [l]). 

are tested by introducing variations first in the altitude and then in the 

velocity. 

by the modified control scheme for initial altitudes between 176,000 ft. 

and 216,000 ft. all with initial velocity - 33,100 ft.sec. and initial 

y = -0.10. For 

paths resulting from positive initial altitude perturbations, the estimated 

time-to-go is shorter than the nominal time-to-go. 

were larger negative values for this index time than they would have been 

if nominal time-to-go had been used to enter the gain tables. 

initialized by 

than half the nominal time, 

very good. 

altitude variations are shown with the nominal 

the altitude-velocity apace of ~ i g .  7, a family of trajectories generated 

by the modified control scheme are shown for initial velocities between 

The control schemes 

Figure 5 shows trajectories in altitude-velocity space generated 

-1 

0 
Plotted also on this chart are constant time-to-go curves. 

Thus, the gains used 

For trajectories 

h - 216,000 ft. the path reaches the terminal point in less 
Prediction of the perturbed terminal time v.8 

The angle-of-attack programs for two paths with large initial 

a-program in Fig. 6. In 
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23,000 ft./sec. and 46,000 ft./sec. 

The errors in final altitude when the flight path angle is zero 

are shown in Fig. 8 for variations in initial altitude and in Fig. 9 for 

variations in initial velocity. 

errors are incurred; for 

is 1400 ft. (Fig. 7) and for 

error is 2400 ft. 

earlier for the modified scheme, Fig. 8 indicates the terminal altitude 

error is less than 3 ft. and Fig. 9 also indicates small altitude errors 

except for large initial variations in velocity such as 13,000 ft./sec. 

where the error I s  93 ft. 

For the scheme based on clock time 'large 

6h(to) = 16,000 ft., the terminal altitude error 

bv(to) - 6,000 ft./sec. the terminal altitude 
For the range of initial altitudes and velocities given 

Not only does the modified scheme meet the terminal constraints on 

y(t,) and h(tf) better but it also achieves greater terminal velocity. 

A comparison in terminal velocity between the control scheme based on clock 

time, the modified control scheme and the first-order approximation relating 

changes in the terminal velocity to changes in the initial conditions (the 

adjoint variable) is shown in Fig. 10 for variations in initial altitude 

and in Fig. 11 for variations in initial velocity. 

made by the modified control is for 6h(to) < 0 and 6v(to) < 0. It is 

for these variations that the scheme based on clock time "runs" out of 

gains and uses the largest a available ( 2  60 DEG). However, the modified 

scheme does better in maximizing the velocity for all variations. 

that the terminal velocity of the modified scheme lies very close to the 

first-order approximation. 

The greatest improvement 

Note 
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8. COMMENTS ON EXTENSIONS OF THE NUMERICAL EXAMPLE 

If the guidance scheme is initialized at entry into the atmosphere, 

the velocity first increases and then decreases. This makes it impossible 

to use velocity-to-go as an index variable as proposed in Ref. 4 . However, 

in the region where velocity is monotonically decreasing the number of 

gains can be reduced by one if velocity-to-go is used as the index variable 

instead of time. The dynamics are velocity dependent; i.e., non-stationary 

with respect to velocity. The gains 11 and r of (45) and (50) are non- 

zero and can be easily calculated from the now 2-vectors, i, f and A .  

The gains r and R would be also non-zero if the boundary conditions 

were explicit functions of time. This would occur if the terminal positions 

were constrained and the rotation of the Earth included. 

9. CONCLUSIONS 

The performance of the re-entry guidance scheme demonstrates that 

using time-to-go a8 the index variable over the entire path increases greatly 

the range of possible initial conditions while still meeting the terminal 

conditions and achieving the maximum value of performance. 

gain to choose depends upon the estimated flight time to the terminal boundary, 

not the clock time, 

The appropriate 

The range of initial conditions handled is SO great that, in general, 

only one reference nominal would have to be stored on an on-board computer 

to guide a re-entry vehicle. 

by storing only the coefficients of a polynomial fit to the reference path 

Even further savings in storage may be gained 
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and gains. For gains that have singularities at the terminal point it is 

suggested the polynomial also have a singular term proportional to some 

powr of (tf-t) . -1 
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APPENDIX A 

Feedback Gains on (t-t,) 

A geometrical interpretation of the sweep variables is given through 

a Hamilton-Jacobi viewpoint as presented in Ref. [2]. An optimal return 

function, V(x,t,$), is defined as the value of j of (15) when starting 

from x at time t < t keeping HU = 0 along the path and meeting 

terminal constraints JI with = 0. For small variations in x,$ and R 

- f  

the sweep and adjoints variables can be interpreted in terms of the optimal 

return function as 

AT(tl = Vx(t) 

nJI fi(t) - v 

The partials are implied by the expansions of (36). 

Using the above identifications the explicit dependence of the gain 

r in (50) on time is illustrated. 

r is given where u need not be calculated by numerical differentiation 

on the computer. The expression f o r  A given by (47) in terms of the return 

function is 

Also an alternative scheme for Calculating 

* N  
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A - H-'[V f + fTV 1 uu x ux u xx 

From = 0 the value of along an optimal path is 
U 

= -H'l[V f f + Vxfut + dt d (Vx)fu] 
uu x WL 

(A-9) 

where 

(A-IO) 
d (VX) = Vxxf + VXt 

Note that the order of total and partial differentiation is important. 

Introducing (A-8) and (A-9) into the expression for (50) gives 

-1 -1 
= Huu[Vxfut + VtxfJ = HuuCVxfult (A-11) 

If Vxfu is not explicitly dependent upon time r = 0 and the neighboring 

control program is stationary. Note that of (A-9) is easily calculated 

by using 

(A-12) = -Vxfx dt cv,> d 

where Vx is identified as the adjoint in (A-1). 

The dependency of the gain R on t is demonstrated directly once 

6x = dx - fdt is used 

related to a change in 

AT The term m f 

E defined by 

dtf = 

is seen 

(45) is 

in (36). The change in the terminal time is then 

the present time as 

iTdx - iTfdt + 

to be -atflat 

iTd$ (A-13) 

keeping x,$ and Q constant. Then 

- 21 - 



a = [l-?] (A-14)  

A s t a t i o n a r y  problem depends only on t h e  t i m e  i n t e r v a l  and not  on a p a r t i -  

c u l a r  value.  Thus i f  t he  problem i s  begun a t i m e  d t  l a te ,  i t  w i l l  f i n i s h  

a time d t  l a t e .  That is a t f / a t  = 1 which i n  t u r n  impl ies  t h a t  a E 0 

f o r  s t a t i o n a r y  problems. To c a l c u l a t e  11 i n  terms of p a r t i a l s  of t he  r e tu rn  

func t ion  with respect t o  t ,  t i m e  may be regarded as a s ta te  v a r i a b l e  and 

the  index t i m e  tI be t he  independent v a r i a b l e .  Since the  problem is not 

e x p l i c i t l y  dependent on the  new v a r i a b l e  t I ,  the  indexing v a r i a b l e  t I  

i s  found by en ter ing  the  ga in  t a b l e s  so t h a t  t h e  pred ic ted  va lue  of t h e  

tI i s  zero.  This i s  equiva len t  t o  nu l l ing  E .  
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APPENDIX B 

Equations Used in the Atmospheric Re-entry Problem 

The equations of motion for a reentry vehicle about a non-rotating 

spherical Earth are 

i = v siny 

where V, y, h is the state vector and 

The variational Hamiltonian is 

t - time is the independent variable. 

+ AJV siny] 

The Euler-Lagrange equations are 
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The partials of the Hamiltonian needed to evaluate the matrices 

C of (331 ,  ( 3 4 1 ,  and (35) are 

A ,  B, and 

A vCDVS 
= --- 

Hvh m 2m ah (R+h)2 V2(R+h) 
L 1 

M YY = Xvg s iny  - A y (  - :)cosy - Ahv siny 

-A- cosy + A HYh E 'v (P.+h) 

6 
cosy - 2v + 

(R+h 1 V (Rzh) '1 
pvs- ps- acL 

+ 'y 2m aa Va v m aa 
H - A  

I1 = 0 
Ya 
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(B-10) 

(B-11) 

(B-12) 

(B-13) 

(B-14) 

(B-15) 

(B-16) 

(B-17) 

(B-18) 



CLP s + H A V = -  m 

HXhV ‘Iny 

Y 
L++) R+h cosy 

H -8 COSY 

XVY 

= -[A - !qCO., 
H = V cosy 
‘hY 

f 
Y 1 

fV 

2g siny CDVLS 
H X h = - -  2m %+ R + h  

V 

HXhh 

(B-19) 

(B-20) 

(B-21) 

(B-22) 

(B-23) 

(B-24) 

(B-25) 

(B-26) 

(B-27) 

(B-28) 

(B-29) 
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APPENDIX C 

__- Character of the Feedback Control Gains I 

The feedback control gains for the optimal guidance scheme of a 

re-entry vehicle have positive values at the beginning of the flight and 

become negative toward the end of the flight (see Fig. 4 ) .  The same behavior 

is found for the control gains in guiding a vehicle along the shortest 

path to a fixed point on a sphere (Ref. [ 5 ] ) .  

used as defined in Fig. 12. The element of distance, ds, on the surface 

of the sphere is 

Spherical coordinates are 

ds r[(de)2 + cos2e(d$) 2 ] 112 

where r = radius of the sphere. The problem is to find u($) to minimize 

J = I(' [u2 + cos 2 e] 112 d$ 

0 

where 

The method of solution for this problem will be to solve the accessory minimum 

problem using the Riccati equation approach given in the text. Here (0 will 

be the independent variable. 

It is straight forward to show that u(@) = 0 , e (4) = 0 satisfies 

the first-order necessary conditions. Let us consider neighborinf! paths 

by expanding the performance inder (C-2) to second order as 
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62J !j j('[u2 - e2]d+ (C-3) 

0 

Here u and 8 are deviations away from the nominal u = 0 , + = 0. The 

Hamiltonian for the accessory minimum problem is 

and the Euler-Lagrange equations are 

where V 

The Riccati transformation of (36) is used to relate X to 8 in 

is a Lagrange multiplier on the terminal constraint e(+,) = 0. 

developing the feedback law, Here for fx - 0 ,  f U = l ,  H e e = - l  

= +1, the sweep variables are determined from (32) H8U = O ' HUU 
dS 2 
d$ - = s + 1  ; S(+,)=O 

; Q(+,) = 0 

The solutions in the interval 0 5 +1 - + 5 a/2 are easily obtained: 

s = -tan(+l-+) (C-10) 

(C-11) 

(C-12) 

Note that as 9, - (I -+ n / 2 ,  S and Q go to 00. This value of S Corresponds 

to a problem where +1 is fixed but e(Ol) is free. S = OD corresponds to 

a conjugate point for the unconstrained problem. If S is transformed Lo 
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that it relates to the fixed end point problem, e($,) = 0, 

s = s - R Q - ~ R  - ctn[+l - $1 (C-13) 

S, R, and Q do not exist for (4 -+I > n/2, but g (propagated also by 

(C-7)) exists In the interval 0 +1 - $ n where at ($l-@) = 0, 

5 + --. Note $ + as 4, - 4 + II, so the latter is a conjugate point 

for the constrained problem. From the point @ = 0 , 8 = 0 to $ = n, 

8 - 0 there are an infinite number of great circles which all give the 

same value of the performance index. 

the neighboring optimal feedback law is 

1 

Using the Riccati transform and (C-6) 

u = - $ e  . (C-14) 

The feedback gain, -g<$), is negative between 0 $, - $ 5 n/2 and 

ositive between s/2 e $ - $ TI. For values of $1 - $ > n the nominal E-. - 1  
path is not a minimizing path. 

Consider a variation from the equatorial nominal path to the point 

A shown in Fig. 12. The optimum path from A to the terminal point 

(0  = 0 , $ = n) diverges from the nominal path until @ = n / 2 ,  then 

converges to the nominal path as 9 + n. Consider an airplane flying 

eastward along the equator to a destination on the equator. 

moves the airplane north of the equator when there is more than 90 to go 

to its destination, it should change its flight path to slightly north of 

east (positive feedback). 

change I t s  flight path to slightly south of east (negative feedback). Using 

the feedback law of (C-141, a control is found initially which forces the 

neighboring path further from the nominal path. 

path in the direction away from the nominal is an effort to mlnlmlze the 

If a disturbance 
0 

- 

If there were less than 90' to go, it should 

The slope of the neighboring 
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performance index. This corresponds to positive feedback in (C-14). 

However, after the median Cp = n/2  is reached, the slope of the neighboring 

path is directed toward the nominal in an effort to meet the terminal con- 

straint. 

Observing that Hee = -1 in (C-3), it seems possible that increasing 

2 
8 might minimize 6 J. In fact, a necessary condition for the existence 

of a conjugate point is that Hoe e 0. 

The following similarities between this simple problem and the re- 

entry problem are: 

positive at the beginning of the flight; (b) -C = H 

was not semi-negative definite [5] (here the performance index is to be 

maximized), and (c) the sweep variable S became unbounded along the optimal 

trajectory for the constrained problem. 

(a) The feedback gains tabulated in Fig. 4 become 

- H H'lH of (32) xx xu uu ux 

The latter means that along this 

path there is a Conjugate point for the problem maximizing velocity with no 

terminal constraints. 

trajectory of Ref. [l]. 

These same things also occurred for the nominal 
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FIG. 6 ANGLE-OF-ATTACK PROGRAMS FOR NOMINAL PATH 
OF A RE-ENTRY VEHICLE AND TWO PERTURBED PATHS. 
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FIG. 11 T E R M I N A L  VELOCITY COMPARISON OF CONTROL SCHEMES BASED ON TIME-TO-GO AND CLOCK 
T I M E  FOR I N I T I A L  VELOCITY PERTURBATIONS. 
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